IIr
(of LY of o)

Verity Network Topology using
packet injection

Mike Korshunov, TME, Web Solutions, Cisco.

October, 2016

Improperly connected wires?

 Dangled cables caused problems that we spend hours debugging at the Network
layer. Let’s solve this problem with software approach.

Topologies

We have topology in one of the popular format, such as JISON/YAML. Orchestrator spins
up the topology. Ansible hosts are automatically filled out from the topo file.

YAML JSON

name: 10 nodes topo {9

"nodes":[O
orchestration: vagrant {B
"box": "ubuntu/trusty64",
des: "name":"server_1",
nodes: "mgmt_1ip":"localhost",
"os":"linux_ubuntu",

- name: server_1 "interfaces":[

type: tgen {B
os: linux ubuntu "interface":"eth1",
’ — "link-name": "link1"
box: ubuntu/trusty64)
mgmt_ip: localhost 1,
po rts: "type" : lltgenn B
- type: ssh "ports”™:[B
{B
Value: 2521 lltype":ﬂssh"’
interfaces: "value":2521
- interface: ethl }
link-name: link1]

1

Solution: Packet Injection

Packet Injection doesn’t care about routing state or any discovery protocols.
Works without IP address assigned on port, uses raw sockets to inject packets.

Required data: port to which send packet, destination mac address

Python script will connect to every available device in topology and will
retrieve destination macs.

As second step: script will send packets from every node to it’s neighbors and
will do vice-versa. So each connection on node will be verified as packet sender
and receiver.

Solution: Packet Injection

Packet Injection doesn’t care about routing state or any discovery protocols.
Works without IP address assigned on port, uses raw sockets to inject packets.

Required data: port to which send packet, destination mac address

Python script will connect to every available device in topology and will
retrieve destination macs.

As second step: script will send packets from every node to it’s neighbors and
will do vice-versa. So each connection on node will be verified as packet sender
and receiver.

Workflow

e Github repo: https://github.com/roboydk/topo-verify/

[roboydk / topo-verify ®Watch~v 1 Star 0 ¥Fork 0
<> Code Issues 0 Pull requests 0 1"l Projects 0 EE Wiki Pulse Graphs Settings

Low level Topology verification using Packet injection — Edit

D 4 commits 1 branch © O releases 42 2 contributors
Branch: master v New pull request Create new file @ Upload files Find file | Clone or download ~ ‘
Maikor new readme Latest commit 964180c 4 minutes ago
im ansible new readme, files updated 6 minutes ago
m python new readme, files updated 6 minutes ago
8 scripts files pushed 6 hours ago

B README.md new readme 4 minutes ago

Workflow #2

2 Prestep, spin up vagrant configuration and play ansible playbooks.

S vagrant status S ansible-playbook playbooks/eline.yml -i ansible_hosts
Current machine states: PLAY [network-nodes]

Server_l running (VirtuaIbOX) 3k 3k 3k 3k 3k 3k sk sk 5k 3k 3k sk sk 5k 5k 3k sk sk sk ok 3k sk sk sk ok ok sk sk skosk ok k ki k

server_2 running (virtualbox) TASK [copy public part of key]

Server_3 running (VirtualbOX) 3k 3k 3k 3k 3k 3k 3k 3k 5k 3k 3k 5k %k 3k 5k %k 3k 5k %k 3k 3k %k 3k 3k 3k 3k 5k 5k 3k 5k %k 3k 3k 3k 3k 3k %k 3k 5k %k 3k 3k 5k %k k 5k %k k %k
tor 1 running (virtualbox) changed: [server_3]

tor 2 running (virtualbox) changed: [tor_2]

tor 3 running (virtualbox) changed: [tor_1]

spine_1 running (virtualbox) changed: [server_2]

spine_2 running (virtualbox) changed: [server_1]

edge running (virtualbox) changed: [spine_2]

changed: [tor_3]
changed: [edge]
changed: [spine_1]

Workflow #3

* Manual example:

vagrant@tor-1:~S sudo tcpdump -i ethl

vagrant@server-1:~5 sudo ./send-raw -i eth1 -s tcpdump: WARNING: ethl: no IPv4 address assigned
255.255.255.254 -d 255.255.255.255 -m 08:00:27:67:5b:04 tcpdump: verbose output suppressed, use -v or -vv for full

Sounce Ibs 255,255 255 254 protocol decode |
listening on eth1, link-type EN10MB (Ethernet), capture size

Dest IP: 255.255.255.255pkt 65535 bytes

len = 42 bytes

Got ifindex 3

Src mac: 08:00:27:23:6b:67

Dest mac: 8:0:27:67:5b:4

tx packet:08 00 27 67 5b 04 08 00 27 23 6b 67 08 00 45 00 00

1c 12 34 00 00 40 01 68 af ff ff ff fe ff ff ff ff 08 00 5e 66 99 99

00 00

total bytes =42

21:08:56.267735 IP 255.255.255.254 > 255.255.255.255: ICMP
echo request, id 39321, seq 0, length 8

vagrant@server-1:~$

Workflow #4

 Automated example. Shut port on device tor 2 and check output of script:

S python topo_verifier.py

Checking link server_1 --->tor_1
Link server_ 1---> tor_ 1V

Checking link server_2 --->tor_2
Sorry, there is some problem

Checking link server_3 --->tor_3

... Omitted output...

Checking link edge ---> spine_2

Link edge ---> spine 2 v/

Online and reachable devices ['server_1', 'server_2', 'server_3', 'tor_1', 'tor_2', 'tor_3', 'spine_1',
'spine_2', 'edge']

Device with connection problems in between: [['server_2', 'tor_2']]

Links:

e Source code for talk: https://github.com/robovydk/topo-verify
e Site with tutorials/docs: https://xrdocs.github.io/
* Follow us on twitter: https://twitter.com/xrdocs

e Catch us tomorrow as we present open source test framework that
uses this tool on Wednesday 5:15pm

Thanks!

